Multigroup Equivalence Analysis for High-Dimensional Expression Data
نویسندگان
چکیده
منابع مشابه
Multigroup Equivalence Analysis for High-Dimensional Expression Data
Hypothesis tests of equivalence are typically known for their application in bioequivalence studies and acceptance sampling. Their application to gene expression data, in particular high-dimensional gene expression data, has only recently been studied. In this paper, we examine how two multigroup equivalence tests, the F-test and the range test, perform when applied to microarray expression dat...
متن کاملMethods for regression analysis in high-dimensional data
By evolving science, knowledge and technology, new and precise methods for measuring, collecting and recording information have been innovated, which have resulted in the appearance and development of high-dimensional data. The high-dimensional data set, i.e., a data set in which the number of explanatory variables is much larger than the number of observations, cannot be easily analyzed by ...
متن کاملStringing High Dimensional Data for Functional Analysis
We propose Stringing, a class of methods where one views high dimensional observations as functional data. Stringing takes advantage of the high dimension by representing such data as discretized and noisy observations that originate from a hidden smooth stochastic process. Assuming that the observations result from scrambling the original ordering of the observations of the process, Stringing ...
متن کاملLongitudinal High-Dimensional Data Analysis
We develop a flexible framework for modeling high-dimensional functional and imaging data observed longitudinally. The approach decomposes the observed variability of high-dimensional observations measured at multiple visits into three additive components: a subject-specific functional random intercept that quantifies the cross-sectional variability, a subject-specific functional slope that qua...
متن کاملClassification of high dimensional data: High Dimensional Discriminant Analysis
We propose a new method of discriminant analysis, called High Dimensional Discriminant Analysis (HHDA). Our approach is based on the assumption that high dimensional data live in different subspaces with low dimensionality. Thus, HDDA reduces the dimension for each class independently and regularizes class conditional covariance matrices in order to adapt the Gaussian framework to high dimensio...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Cancer Informatics
سال: 2015
ISSN: 1176-9351,1176-9351
DOI: 10.4137/cin.s17304